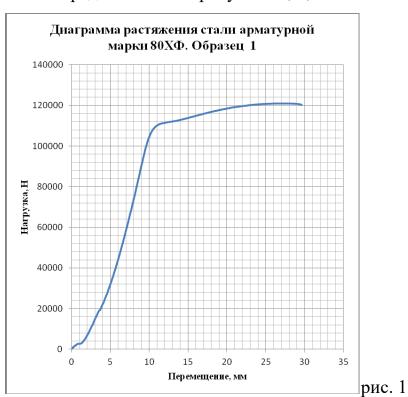
В соответствии с Концепцией реформирования ремонтного комплекса путевого хозяйства ОАО «РЖД» 23 апреля 2008 года было зарегистрировано дочернее открытое акционерное общество «БетЭлТранс», которое в настоящее время объединяет 10 филиалов - заводов по производству железобетонных шпал. АО «БЭТ» является основным поставщиком железобетонных шпал и железобетонного бруса для ОАО «РЖД» и его дочерних предприятий. Так, в 2023 году продукция АО «БЭТ» составила около 90 % от общего объема закупленных ОАО «РЖД» шпал.

Ранее применяемая арматура для железобетонных железнодорожных шпал выпускалась на ОАО «Магнитогорский металлургический комбинат» (ММК) из высокоуглеродистой стали 80Р и 80ХФЮ, содержащей углерод 0,80-0,85% и алюминий 0,01-0,05%. Однако, в процессе освоения выявился ряд негативных моментов относительно качества металла.

Высокое содержание углерода приводило к образованию цементитной сетки вокруг зерен, а высокое содержание алюминия приводило к образованию значительного количества окислов алюминия (корунд с твердостью по шкале Мооса 9), являющихся неметаллическими включениями с высокой твердостью, трудно удаляемых из стали в шлак. Так как арматура имеет диаметр 9,6 мм, наличие в заготовках стали этих компонентов резко снижали прочностные характеристики в готовой арматурной продукции. При предварительном натяжении с усилием 9,7-9,8 приводило ТОНН арматура рвалась, что значительному снижению производительности труда и выходу бракованной продукции (железнодорожных шпал из железобетона). Для того чтобы снизить выход бракованной продукции AO «БЭТ» было вынуждено закупать арматурные стержни у фирмы Voestalpine (Австрия).

СПРАВКА по обрыву стержневой арматуры на заводах-филиалах АО «БЭТ» диаметром 9,6 мм сталь 80ХФЮ за январь-декабрь 2011 года

Наименование показателей	Ед. изм.	Горновский завод спецжелезобетона	Завод ЖБИ№6 г. Энгельс	Челябинский завод ЖБШ	Итого
Использовано арматуры	штук	1718916	1337164	628044	3577516
Обрывов всего	штук	7782	2637	1202	11621
% обрывов от использованной арматуры по телу	%	0,45 самое высокое усилие натяжения	0,20 частично применялась арматура Voestalpine (Австрия)	0,19 частично применялась арматура Voestalpine (Австрия)	0,32


Известно, что введение в сталь небольших количеств ванадия значительно увеличивает ее упругость, прочность на истирание и сопротивление разрыву. Наилучшее применение ванадий имеет в конструкционных сталях, легированных хромом, никелем и марганцем.

Поставленная задача по снижению обрыва арматурных стержней достигается тем, что в углеродистой стали снижена доля углерода до 0,77-0,79%, алюминия до величин не более 0,005% и проведено микролегирование: хромом в пределах 0,20 – 0,30% и ванадием в пределах 0,060-0,080%. Выплавленная сталь марки 80ХФ с корректировкой по химическому составу, для арматуры, применяемой при изготовлении железобетонных шпал позволила снизить обрывность арматурных стержней с 0,45% до 0,03%, т.е. в 15 раз. А также увеличить класс прочности арматуры с 1400 Н/мм2 до 1500 Н/мм2.

СПРАВКА по обрыву стержневой арматуры на заводах-филиалах АО «БЭТ» сталь $80\text{X}\Phi$ за 2023 год

Завод/месяц	Горновский завод	Челябинский	Завод
	спецжелезобетона	завод ЖБШ	ЖБИ№6
			г. Энгельс
январь	0,021	0,02	0,016
февраль	0,024	0,018	0,031
март	0,015	0,008	0,027
апрель	0,014	0,011	0,014
май	0,009	0,009	0,021
июнь	0,019	0,012	0,016
июль	0,025	0,009	0,008
август	0,015	0,021	0,022
сентябрь	0,021	0,02	0,018
октябрь	0,021	0,038	0,032
ноябрь	0,021	0,022	0,035
декабрь	0,032	0,036	0,041
среднее значение	0,0197	0,0187	0,023
кол-во	4 141 500	1 548 784	1 503 948
использованных			
арматурных			
стержней			
кол-во	1 035 375	387 196	375 987
изготовленных			
шпал			

Проведенные испытания в ФГБОУ ВО «Российский университет транспорта» (РУТ (МИИТ) подтвердили прочностные свойства стержней: временное сопротивление разрыву σ в ср= 1738 МПа при среднеквадратическом отклонении 9,3 и коэффициенте вариации 0,5; условный предел текучести σ т ср= 1583 МПа при среднеквадратическом отклонении 5,3 и коэффициенте вариации 0,3 выше допускаемых значений на 8,6 % и 9,2 % соответственно, а относительное удлинение σ 10 ср = 7,60%, при среднеквадратическом отклонении 0,4 и коэффициенте вариации 5,3 на 27% выше допускаемых значений. Диаграммы растяжения и вид образцов после испытаний представлены на рисунках 1, 2,3.

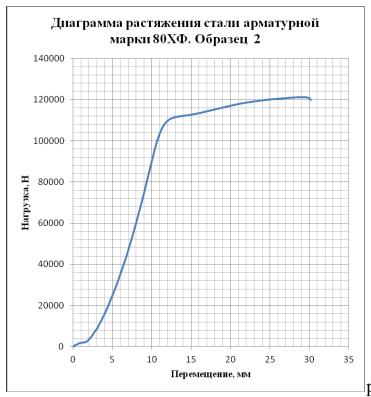


рис. 2

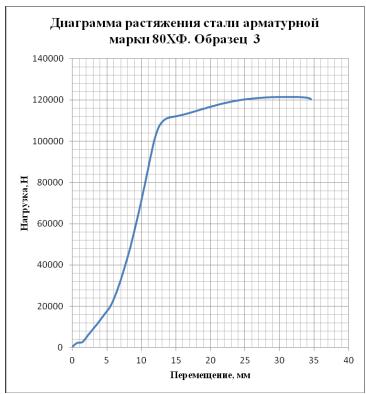


рис.3

Рисунок 1 – Вид образцов для испытаний

Рисунок 2 — Вид поверхности образцов для испытаний

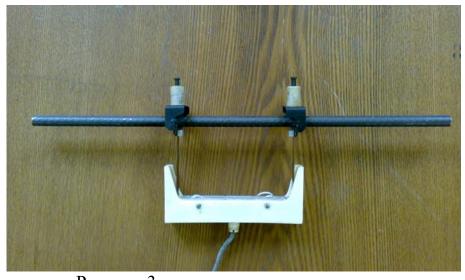


Рисунок 3 подключение экстензометра

Рисунок 4 Испытания арматурных прутков на растяжение с определением физико-механических свойств на разрывной машине P50 с использованием экстензометра

Рисунок 5 – Циклические испытания образцов арматурной стали

Информация о социальном и (или) экономическом эффекте:

1	Снижение расхода	кг на	Значение
	металла на 1 шпалу, в том	шпалу	
	числе:		
1.1	Челябинский завод ЖБШ		0,54
1.2.	Горновский завод		
	спецжелезобетона		0,86
1.3	Завод ЖБИ№6 г. Энгельс		0,40
2	Экономия металла в	кг за год	
	объемах 2023 г., в том		
	числе:		978 174
2.1	Челябинский завод ЖБШ		167 631
2.2	Горновский завод		
	спецжелезобетона		684 989
2.3	Завод ЖБИ№6 г. Энгельс		125 554
3	Стоимость металла, в том числе:	руб. за кг	
3.1	Челябинский завод ЖБШ		143,97
3.2	Горновский завод		
	спецжелезобетона		145,39
3.3	Завод ЖБИ№6 г. Энгельс		141,85
4	ИТОГО экономия по	руб.	
	металлу		141 893 028

Экономический эффект от внедрения арматуры из стали марки 80 XФ на заводах-филиалах АО «БЭТ» составил 141 893 028 руб. за 2023 г.

Полученная арматурная сталь 80 XФ и изготовленные из нее арматурные стрежни позволили полностью отказаться от приобретения арматурных стержней фирмы Voestalpine (Австрия).