Краткое изложение содержания работы.

Работа состоит из трех основных модулей: разработки системы дефектовки дорожного полотна; разработки нейросетевых методов распознавания образов в управления транспортными потоками; исследования проблемы задаче классификации восстановления 3D-объекта при симулятора И создании реалистичной городской среды.

Основная научно-техническая идея.

Повышение эффективности оперативного детектирования и классификации дефектов дорожного покрытия за счет создания алгоритмического обеспечения для устройств с малой вычислительной мощностью, а также повышении пропускной способности на участках улично-дорожной сети за счет применения подсистем активного и пассивного мониторинга транспортных потоков для обеспечения оптимальности передвижения посредством современных информационных технологий и алгоритмов машинного обучения.

Описание результатов и их значение для практики.

Результаты работы могут быть использованы при создании автоматизированной системы управления транспортными потоками с обратной связью, позволяя за счет разработанных методов осуществлять воздействие на участников дорожного движения.

Достигнутый экономический и (или) социальный эффект от внедрения.

Проект «Разработка системы детектирования и классификации объектов в задаче дефектовки дорожного полотна» — победитель конкурса «СТАРТ-1» (финансирование – 4 млн. рублей, договор № 5114ГС1/89614 от 20.11.2023).

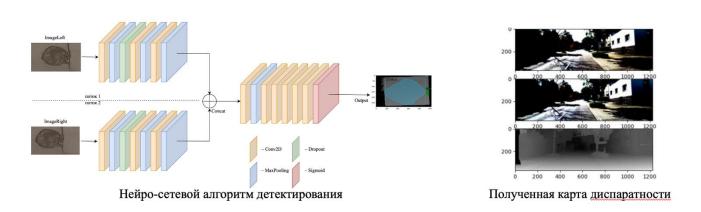
Практическая и теоретическая ценность работы

- 1. Адаптивный алгоритм сбора и накопления видеоинформации о состоянии дорожного полотна за счет корректировки количества обрабатываемых кадров в секунду и организации очереди в буфере микроконтроллера позволяет уменьшить размер накапливаемых данных и производить мониторинг дорожного полотна в местности с нестабильным каналом связи.
- 2. Нейросетевой алгоритм детектирования (Prophetam-DD) объектов на видеоизображении за счет построения карт диспаратности на основе выбора множества вариантов для каждой точки изображения позволяет понизить сложность вычислений в задаче детектирования дефектов дорожного полотна, благодаря чему можно проводить оперативный анализ на устройствах с малой вычислительной мощностью.
- 3. Нейросетевой алгоритм детектирования (Prophetam-DD) объектов за счет фильтрации изображений, на которых отсутствуют дефекты, и выделения только значимых областей с дефектами позволяет повысить эффективность накопления и хранения информации не менее чем на 36 % по сравнению с существующими системами.
- 4. Комбинирование алгоритмов (пп. 1–3) позволяет передавать на классификацию только значимые области изображений с дефектами, что позволяет повысить точность и снизить вычислительную сложность в задаче многоклассовой классификации.
- 5. Нейро-сетевой алгоритм классификации (Prophetam-DC) дефектов дорожного полотна по видеоизображению за счет параллельной обработки двух потоков разного типа (стерео- и моно-) изображений позволяет повысить точность многоклассовой классификации дефектов дорожного полотна при разных условиях окружающей среды и составляет не менее 92 %.
- 6. Архитектура программно-аппаратного комплекса за счет обоснованных принципов построения высоконагруженных систем с учетом отказоустойчивости и масштабируемости позволяет осуществлять непрерывный мониторинг состояния дорожного полотна, что приводит к своевременному реагированию ответственных за данный участок улично-дорожной сети организаций.

Теоретическая ценность работы заключается в доказательстве целесообразности использования нейро-сетевых алгоритмов детектирования и классификации, а также алгоритмов накопления данных, основанных на стереозрении, в задаче обнаружения объектов.

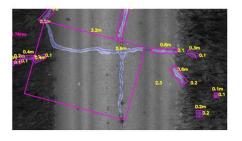
Система дефектовки дорожного полотна

Аппаратный комплекс сбора данных: 1 – видеокамеры GoPro Hero7 Black (2 шт.); 2 – микрокомпьютер Jetson Nano; 3 – GPS-модуль; 4 – специальное крепление



Классы и количество элементов, содержащиеся в наборе данных до (20000 изображений) и после (57137 изображений) аугментации




Примеры собранных изображений

Получение карты диспаратности классическими методами имеет ряд недостатков. Во-первых, сложность вычислений достаточно высокая, что является критически важным в задаче дефектовки дорожного полотна, так как вычисления происходят на борту транспортного средства. Во-вторых, карты диспаратности сильно зависят от наличия повторяющихся структур, наличия или отсутствия текстур, отражений и т.д., что является в данной предметной области критически важным, так как изображения полотна получаются в движении при различных погодных условиях, а также дорожное полотно является достаточно монотонным по значениям пикселей изображением.

Обследование дорожного полотна производится в разное время суток, соответственно в темное время используется искусственное освещение, усложняется весь процесс мониторинга внешними факторами, такими как дождь, снег, туман, смог и другими атмосферными явлениями. Стоит отметить, что формат изображений также разный из-за использования разных комплексов фото-видео фиксации. В связи с этим, зачастую при использовании существующих алгоритмов классификации теряются значимые признаки.

Результат работы нейро-сетевого алгоритма

Архитектура программно-аппаратного комплекса непрерывного мониторинга состояния дорожного полотна

Отображение дефекта на карте

Информация о всех обнаруженных дефектах дорожного полотна отправляется на платформу. Данные о дефектах хранятся в следующем формате: координаты (широта и долгота), тип дефекта, размер, дата и время обнаружения, а также срок ремонта (который определяется в соответствии с ГОСТ Р 50597 2017, раздел «Размеры дефектов покрытия и сроки их устранения», а категории дорог и улиц определены по СП 42.13330.2016) и Ф.И.О. ответственного за ремонт.

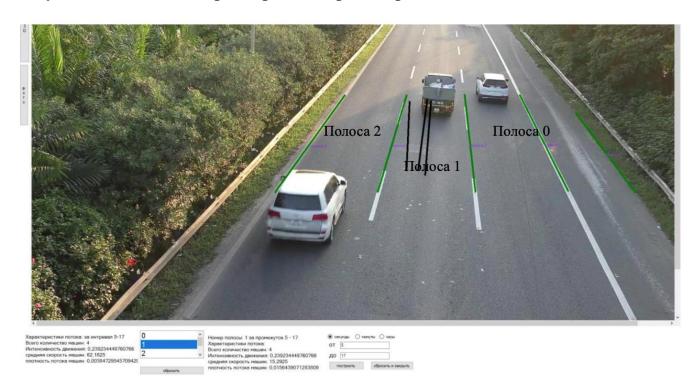

N₂	Широта	Долгота	Дефект	Срок устранения	Ответственный	
1	55.707053807912466	37.75710793874013	Выбоина	До 12-11-2021	Каримов А.А.	Показать
2	55.737719085541560	37.68380662522914	Выбоина	До 10-11-2021	Ильин А.Е.	Показать
3	55.777098329655246	37.51150807381374	Трещина	До 10-11-2021	Иванов И.С.	Показать
4	55.748688994622036	37.50044071804915	Выбоина	До 20-11-2021	Воронцов К.П.	Показать
5	55.776840307267111	37.66015842818779	Трещина	До 09-11-2021	Шмелев Л.Р.	Показать
6	55.775456823746452	37.74324732472380	Трещина	До 11-11-2021	Гусев А.Е.	Показать
7	55.723432423412341	37.64328432947432	Пролом	До 17-11-2021	Иванов И.С.	Показать
8	55.753482928474643	37.54638291298751	Трещина	До 19-11-2021	Иванов И.С.	Показать
9	55.763526272846545	37.76784938937465	Выбоина	До 01-12-2021	Воронцов К.П.	Показать
10	55.744738328457574	37.75710793874013	Трещина	До 11-11-2021	Каримов А.А.	Показать

Таблица обнаруженных повреждений

Карта с отмеченными дефектами

Получение основных характеристик транспортного потока

